Comparison of discrete Hodge star operators for surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Hodge operators

Many linear boundary value problems arising in computational physics can be formulated in the calculus of differential forms. Discrete differential forms provide a natural and canonical approach to their discretization. However, much freedom remains concerning the choice of discrete Hodge operators, that is, discrete analogues of constitutive laws. A generic discrete Hodge operator is introduce...

متن کامل

Convergent discrete Laplace-Beltrami operators over surfaces

The convergence problem of the Laplace-Beltrami operators plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve the operator. In this note we present a new effective and convergent algorithm to compute discrete Laplace-Beltrami operators acting on functions over surfaces. We prove a convergence t...

متن کامل

Delaunay Hodge star

We define signed dual volumes at all dimensions for circumcentric dual meshes. We show that for pairwise Delaunay triangulations with mild boundary assumptions these signed dual volumes are positive. This allows the use of such Delaunay meshes for Discrete Exterior Calculus (DEC) because the discrete Hodge star operator can now be correctly defined for such meshes. This operator is crucial for ...

متن کامل

The Hodge Star Operator

We’ll start out by defining the Hodge star operator as a map from ∧k(R) to ∧n−k(R). Here ∧k(R) denotes the vector space of alternating k-tensors on R. Later on, we will extend this definition to alternating tensors on a finite dimensional vector space that is equipped with an inner product. Let I = (i1, ..., ik) be some increasing multi-index of length k. That is i1 < i2 < i3 < .... Let J = (j1...

متن کامل

A Fermionic Hodge Star Operator

A fermionic analogue of the Hodge star operation is shown to have an explicit operator representation in models with fermions, in spacetimes of any dimension. This operator realizes a conjugation (pairing) not used explicitly in field-theory, and induces a metric in the space of wave-function(al)s just as in exterior calculus. If made real (Hermitian), this induced metric turns out to be identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer-Aided Design

سال: 2016

ISSN: 0010-4485

DOI: 10.1016/j.cad.2016.05.002